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Recent developments in the theory of spin glasses are discussed. There has been 
considerable progress, due to Parisi, Sompolinsky, and others, towards under- 
standing the infinite range (mean field) model of Sherrington and Kirkpatrick. 
Relaxation times diverge in the thermodynamic limit, and this nonergodic 
behavior is now understood to be the cause of earlier difficulties. There has been 
less progress in the study of more realistic models with short-range interactions, 
but numerical studies have .shown rather clearly the absence of a finite tempera- 
ture transition in two dimensions. There is probably no transition in d = 3 either, 
though the evidence is tess clearcut, which makes it difficult to understand the 
sharpness of the "freezing" observed experimentally. Well below the freezing 
temperature ESR and torque measurements have been fairly well explained by a 
theory of Henley, Sompolinsky, and Halperin, in which an important ingredient 
is anisotropy due to the Dzyloshinsky-Moriya interaction proposed by Fert and 
Levy. 

KEY WORDS: Spin glasses; phase transition; metastable states; rep- 
licas; computer simulations; anisotropy. 

Interest  in spin glasses cont inues  unaba ted ,  and  several hundred  more 

papers on this topic have appeared since the previous S T A T P H Y S  confer- 
ence three years ago. All that can be accomplished in a short review like 

this is to give a general  impression of how the field has developed. We shall 
see that progress can be reported in certain areas, but  m a n y  questions 
remain  unanswered.  More  complete references to other work are given in 
the reviews by Fischer (~) and  R a m m a l  and  Souletie. (2) 

For  a theorist a spin glass model  must  have both frustrat ion (3) and  

disorder. Systems with frustrat ion canno t  minimize  s imul taneously  the 
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energy of each term in the Hamiltonian because of competition between 
different requirements. A simple example of a frustrated system is an 
antiferromagnet on a triangular lattice. This is not a spin glass, however, 
because it has no disorder. (4) Such properties can arise in experimental 
systems in various ways. The canonical spin glasses, (5~ such as CuMn and 
AuFe, consist of dilute randomly placed magnetic atoms in a nonmagnetic 
host metal interacting with an RKKY interaction, which of course changes 
sign with distance and gives the frustration. Insulating materials can also 
show spin glass behavior, for instance EuxSr 1 _xS, where frustration is due 
to competition between first and second neighbor interactions of different 
sign, (6) and real amorphous glasses with magnetic atoms (7) where differ- 
ences in bond angles can alter the sign of the superexchange interaction. 

Experimentally, one of the most striking signatures of spin glass 
behavior is a fairly sharp cusp (a~ in the low field ac susceptibility. Below the 
cusp, or freezing, temperature To, there are strong irreversible effects 
showing that enormous relaxation times occur. For some materials, such as 
Eu~Sr~_xS, a fairly large (9) dependence of Tf on the logarithm of the 
measuring frequency, ~, is observed, whereas other systems, such as CuMn, 
show very little ~ 10) variation with frequency. A more direct indication of a 
phase transition, though the experiment is a bit harder, is to look at the dc 
nonlinear susceptibility, X~t, defined to be the coefficient of h 3 in the 
magnetization, i.e., 

m = X h - x n l h  3 - F  �9 �9 �9 (1) 

As we shall see, theory predicts that X,t diverges if there is a spin glass 
temperature, and experiments ~0 show that it indeed becomes very large in 
a way consistent with a power law divergence. The advantage of these 
experiments is that they are above Tf and so should not be affected by 
hysteresis effects. It should be pointed out, however, that even a very small 
error in m due to a small irreversible component which could be present 
even just above Tf can give a large error in Xnt. Other experiments that will 
be mentioned are those ~2'~3) which plot out the freezing temperature 
(defined in different ways for different experiments) against h and find 
evidence for a "transition line" Tc(h ), where, for small h, 

L ( h )  - L (o )  h (2) 
where ?~ is close to 2/3, As will be pointed out later, mean field theory 
(MFT) also predicts this behavior, including the value of the exponent. 

Having given a very brief and personal view of the experimental 
situation, let us now give a somewhat fuller account of the theory. Most 
theoretical work falls naturally into one of three categories: 

(i) Study of the MFT. 
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(ii) Study of more realistic models with short-range interactions in 
three (and two) dimensions. The object is to determine whether these 
models have a transition as in MFT. If not, the predictions of MF T should 
be quite inappropriate and the observed effects must be due to a gradual, 
though fairly rapid, freezing out of the spins when the temperature is 
lowered and the time scale of observation is fixed. 

(iii) Investigation Of properties well below TU, where the system is 
certainly frozen o n  any experimental time scale and the object is to 
determine the nature of the anisotropy which plays an important role in, 
for instance, ESR and torque measurements. 

Let us start with MFT, which is the category with the most progress to 
report. Like much of the theory, it is based on a model proposed b y  
Edwards and Anderson (14) where one considers a regular lattice with spins 
at each point and interactions between them which are independent ran- 
dom variables, with a distribution which usually depends on the distance 
between the sites. For instance, one could have nearest-neighbor coupling 
only and this will be discussed later. Sherrington and Kirkpatrick (15) (SK) 
proposed, by analogy with ferromagnetism, where MFT is exact in the 
infinite range limit, to define MFT for spin glasses as the exact solution of 
an infinite range Edwards-Anderson model, where the distribution i s  
independent of distance. This unphysical assumption should make the 
model solvable. The geometry of the lattice is now irrelevant so there is no 
space dimension associated with the model; but it probably corresponds 
most closely to a short-range model in the limit of infinite space dimension. 

The Hamiltonian is given by 

H = - ~ J i j SS j -  h ~ S ,  (3) 
( i , j )  i 

where h is a uniform field and the Jsj have a Gaussian distribution whose 
mean, JoiN,  and variance, l / N ,  both have to scale as N -~, where N is the 
number of spins, to obtain a sensible but nontrivial thermodynamic limit. 
Only a symmetric distribution will be considered here. We have written Eq. 
(3) for Ising spins, S i = + l, and will only discuss this case, but the 
Heisenberg model has also been investigated. (76) 

In SK's original solution a transition occurs in zero field at T c = 1 in 
our units and the low-temperature phase is characterized by a single order 
parameter, q, defined by 

q = ( ( S i ) ~ )  J (4) 

where ( -  . .  ) r  denotes a statistical mechanics average for a given set of 
interactions and ( �9 . �9 )g is an average over the interactions. This solution 
was subsequently shown by Almeida and Thouless (17~ (AT) to be unstable 
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T 

Fig. 1. The shaded region is where the Sherrington Kirkpatrick solution for the infinite range 
Ising spin glass is unstable and "replica symmetry breaking," i.e., nonergodic behavior occurs, 

below a line in the h -  T plane terminating at h = 0, T = T c, see Fig. 1, and 
for small h varies as in Eq. (2). Below the AT line a single order parameter 
description is no longer correct. Both the SK paper and the subsequent 
calculations used the replica trick where the identity 

{z '%-  1 
{In Z ) j  = lim (5) 

n-~0 Ft 

is used to perform the quenched average and obtain a nondisordered 
Hamiltonian. Labeling the n replies by a,/~ etc., the order parameter, q, in 
Eq. (4) becomes 

q = q~t~ = {S~Sf )  (6) 

for any c~ v ~/3 in the replica formulation. Below the AT line it is necessary 
to break replica symmetry, i.e., to make q ~  depend on a and ,8, whereas 
the SK solution had them all equal. The most successful such scheme is due 
to Parisi, (~8) who breaks up the matrix q ~  into a fractal structure, and 
finally, after taking the limit n ~ 0 ,  reduces the matrix to a continuous 
function q(x) in the interval from 0 to 1. The predicted form for q(x) is 
sketched in Fig. 2 for h ~ 0, T < T c. 

It was initially unclear what is the significance of this variable x and, 
in particular, how q(x) is related to physically meaningful quantities such 
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Fig. 2. A qualitative sketch of Parisi's order parameter function q(x) for T < To, h ~ 0. 
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Fig. 3. ~- is the longest relaxation time for the SK model and N the number of spins. The 
temperature is 0.4 T~ and data for h = 0 and h = 1.2 T~ are shown. At h = 0 In ~- cc N1/4 which 
shows nonergodic behavior, while at h = 1.2To, which is above the AT line, the relaxation 
times are independent of system size. 
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as q in Eq. (4). The characteristics of the phase below the AT line were 
clarified by Sompolinsky, (~9) who showed that there are relaxation times 
which diverge when N-+ oo. Subsequently, direct numerical evidence for 
this was obtained, (2~ see Fig. 3. This idea is connected with the fact that 
the mean field equations of Thouless, Anderson, and Palmer (21) (TAP), 
which describe the magnetizations for a particular set of Jg, have many 
solutions. (22) One expects that these (or perhaps a subset) describe the 
minima in phase space which, to be stable at finite temperatures; must be 
separated from other minima by a barrier whose height diverges when 
N--> oo. Sompolinsky's divergent time scales presumably correspond to the 
rare fluctuations over these barriers which can occur for finite N. 

With this picture it is clear that many order parameters can be defined. 
For instance, let us consider one of these minima (the words "phases," 
"valley," and "solutions" will be used interchangeably) and define an order 
parameter for that valley, qS', by 

q,~ 1 = ~ ~ / ( m l )  2 (7) 

where m 7 is the magnetization of site i in phase s. Really we would like to 
avoid having to specify which phase we are talking about and a statistical 
description may be obtained by noting that statistical mechanics sums over 
them all with a weight P(s), where (23) 

1 exp(-  flF s) (8) P ( s )  = - i  

One can therefore define the Edwards-Anderson order parameter, qEa, by 

qEA = ( ~P(s)q'S )j (9) 

which is presumably the same as q"  for one solution of minimum free 
energy. Alternatively, the statistical mechanics order parameter q, of Eq. 
(4), is given by 

q=(EP(s)e(s')q") (t0) 
S,S" I J  

where 

qS,, 1 s s, ( l l )  
~ �9 mi mi 

measures the overlap between magnetizations in phases s and s'. 
de Dominicis and Young, (23) using the permutation symmetry of the 

replica Hamiltonian, have argued that 

q = lira 1 ,,~o n(n-1) ~ q"B=--'q"x~'dx (12) 
a ~ B  J0 
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where the first equality is true in general and the second is for Parisi's 
ansatz. It follows almost trivially, comparing Eqs. (10) and (12), that (24'25) 

ax( q') 
dq' - (~,.P(s)P(s')6(q'- qS")) s (13) 

which is a probability distribution for the overlap between magnetizations 
of the solutions to equal q'. This provides the physical significance of 
Parisi's replica symmetry breaking scheme. 

Many of the detailed predictions of Sompolinsky's (19) dynamical the- 
ory agree with results using the above interpretation of replicas ~23'25'26) 
except that he finds q = q (x = 0) instead of Eq. (10). The reason for the 
discrepancy is not clear, but it has been proposed (27~ that the dynamical 
approach may describe a nonequilibrium situation. 

Recently (28) the right-hand side of Eq. (13) has been evaluated by 
computer simulations, and the results are consistent with the predictions for 
the function q(x), see Fig. 2, modified by  fairly substantial finite size 
corrections. Thus the MFT is certainly understood qualitatively in terms of 
many phases with infinite barriers between them, and on a quantitative 
level Parisi's theory is close to, and perhaps equal to, the exact solution. 

Next we discuss the second category of theories where short-range 
(and hence more realistic) models are studied. One important motivation 
for this is to determine the lower critical dimension, dL, for the spin glass 
transition. This is the space dimension below which fluctuations, neglected 
in MFT, destroy the transition which MFT predicts. If d L > 3 then real 
systems do not have a sharp transition and the experiments have to be due 
to a gradual freezing of the spins on experimental time scales. 

One of the first attempts to determine d L was due to Fisch and 
Harris. ~29) They calculated 10 terms in the high-temperature series for Xs6, 
defined by 

1 = )7")., (14) Xso  E( s,s 2 

for the nearest-neighbor symmetry Edwards-Anderson model with Ising 
spins on cubic lattices of dimension d. Clearly, XSG diverges when the 
correlations become very long range (but of random sign) and this signals a 
transition. For the model considered Xso = 3T3x~l �9 An analysis of the 
series gives no divergence below d = 4, implying d L = 4, and similar results 
were subsequently obtained (3~ for Heisenberg spins. However, a reanalysis 
of the d = 3 Ising series Ol) showed that the situation is not completely 
clearcut, some methods of analyzing the series giving a transition, others 
not. Clearly it would be useful if several more terms in the series could be 
obtained. 
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For Ising spins one can evaluate the partition function exactly for 
small systems and Morgenstern and Binder (32) have succeeded in doing this 
for the Edwards-Anderson model for sizes up to 18 • 18 in d = 2 and 
4 x 4 • 10 in d = 3. They calculated 

F(R0. ) = ( (  S, Sj )~ ) j  (15) 

where Ry is the distance between sites i and j ,  and found that it always 
decayed exponentially, showing the absence of a transition. This is very 
convincing in d -  2 where finite size effects only play a role at rather low 
temperature, but the linear dimensions in d = 3 were so small that one 
probably cannot draw definite conclusions. In d = 2 it was found that Xs~ 
and the correlation length ~ appear to have power law divergences as T ~  0, 
specifically 

X s G ~ T  -4, ~,--.T -2 (16) 

One can go to much larger sizes with Monte Carlo simulation but there 
another problem appears. At low temperatures relaxation times increase 
very rapidly so the system cannot be brought to equilibrium. Nonetheless, 
simulations have been carried out (33) which give results consistent with Eq. 
(16) over an intermediate temperature range and, in addition, give fairly 
precise results for dynamics. More quantitatively, if we define 

1 q(t) = ~ 2 ((Si(t~176 + t))v)s (17) 
l 

where t o is an equilibration time, and extract an average relaxation time, ~-, 
from �9 = fq( t )dt  and characteristic energy barrier 2xE from AE = Tioga- 
then the simulations find (33) 

AE = a + b / T  (18) 

in d = 2. Consequently, energy barriers are always finite, except at T = 0, 
but increase as T ~  0 because of increasing correlations between the spins, 
as described by Eq. (16). 

One can also calculate ~" in the presence of a uniform magnetic field, h, 
and plot lines of constant ~- in the h - T  plane. Data for the d = 2 simula- 
tions is shown in Fig. 4 and at low temperatures varies approximately as 
T(h) - T(h = O) cc h2/3, just like the AT line. However, this is probably a 
coincidence since the physics is very different. The AT line is a sharp 
transition while the data in Fig. 4 are a purely dynamical effect. Similar 
numerical results have also been obtained by Kinzel and Binder. (34) The 
data in Fig. 4 look very like results (13) on EuxSrt_xS, which suggests that 
the gradual freezing picture may be appropriate for this insulating material. 

Some analogous simulations have also been carried out on a simple 
cubic lattice. (3s) Relaxation times and the spin glass susceptibility increase 
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Fig. 4. Lines of constant  average relaxation time ~-, are plotted in the h 2/3- T plane for d = 2, 
+ J nearest-neighbor Ising spin glass. The field values are h = 0, 0.1, 0.2, 0.45, and 0.7. At low 
temperatures these lines have a similar behavior to the AT line, 8T cc h2/3, but the data here 
show a purely dynamical  effect, with a distinct line for each time scale. 

faster than in d = 2, and if a transition occurs it happens at rather low 
temperatures T ~< 1.3, which is significantly below the lowest temperature at 
which equilibration can be attained. However, the data are also consistent 
with a transition only at T = 0. 

By generalizing their earlier work on mean field dynamics (19'36) to 
short-range models, Sompolinsky and Zippelius (37) have found that d L = 4. 
This is the most convincing demonstration to date that fluctuations wipe 
out the spin glass transition in d = 3. However, one then has the severe 
problem of understanding experiments on metallic systems such as CuMn 
which apparently do show a transition. The data for X,z (11) seem particu- 
larly compelling. In the last three years, then, theorists have become more 
than ever convinced that d L = 4 and experimentalists more than ever sure 
that a transition occurs in d = 3. Hence this paradox is no nearer being 
resolved. Could it be that R K K Y  or Dzyloshinski-Moriya (3s) interactions 
are really long range and therefore change d L for metallic systems? 

Finally, we report briefly on the third class of theories, which is 
concerned with behavior well below the freezing temperature, where the 
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spins are certainly trapped in some metastable state for the duration of the 
experiment. The largest transitions are the isotropic Heisenberg exchange 
forces while anis0tropy, which prevents free overall rotation of the spins, is 
relatively weaker. However, torque (39~ and ESR (4~ measurements probe 
directly this anisotropy. Fert and Levy (38) have argued that Dzyloshinski- 
Moriya interactions are the largest source of anisotropy in canonical spin 
glasses, such as CuMn. This gives (39'40 a unidirectional anisotropy, i.e., the 
free energy changes by F for rotation through an angle v a, where 

F = Klcos~ (19) 

The more conventional uniaxial anisotr0py gives a cos 20 dependence. The 
change in free energy should only depend on v ~, the magnitude of the 
rotation, and not on the direction about which the rotation takes place. 
This, and the cosy a variation, have been observed. (39~ 

A detailed theory for ESR frequencies, incorporating this anisotropy, 
has been developed by Henley eta/. (41) They note that one needs to follow 
a triad of three orthogonal vectors to describe the rotation of a spin glass, 
not just the direction of a single vector which is sufficient for collinear 
magnets. As a result, there are three resonance modes, and these have 
apparently all been seen. (4~ If large angles of rotation are induced, for 
instance by applying a field at a large angle to the field in which the sample 
is cooled, the theory works less well and the assumption that the spins 
rotate rigidly seems to be no longer correct. Nonetheless, many of the 
important features of the ESR data are explained by the triad model with 
Dzyloshinski-Moriya anistropy. 

To conclude, there has certainly been progress in the last three years, 
but crucial questions concerning the behavior of spin glasses near the 
freezing temperature remain unanswered. 
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